The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts

نویسندگان

  • Birgit Märtens
  • Linlin Hou
  • Fabian Amman
  • Michael T. Wolfinger
  • Elena Evguenieva-Hackenberg
  • Udo Bläsi
چکیده

The conserved Sm and Sm-like proteins are involved in different aspects of RNA metabolism. Here, we explored the interactome of SmAP1 and SmAP2 of the crenarchaeon Sulfolobus solfataricus (Sso) to shed light on their physiological function(s). Both, SmAP1 and SmAP2 co-purified with several proteins involved in RNA-processing/modification, translation and protein turnover as well as with components of the exosome involved in 3΄ to 5΄ degradation of RNA. In follow-up studies a direct interaction with the poly(A) binding and accessory exosomal subunit DnaG was demonstrated. Moreover, elevated levels of both SmAPs resulted in increased abundance of the soluble exosome fraction, suggesting that they affect the subcellular localization of the exosome in the cell. The increased solubility of the exosome was accompanied by augmented levels of RNAs with A-rich tails that were further characterized using RNASeq. Hence, the observation that the Sso SmAPs impact on the activity of the exosome revealed a hitherto unrecognized function of SmAPs in archaea.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets

Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism. Sm-based regulation is diverse and can range in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in these processes being mediated by an RNA-associated molecular assembly built on Sm proteins. Despite the availability of several 3D-structures of Sm-like a...

متن کامل

Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome

The archaeal exosome is a phosphorolytic 3'-5' exoribonuclease complex. In a reverse reaction it synthesizes A-rich RNA tails. Its RNA-binding cap comprises the eukaryotic orthologs Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. In Sulfolobus solfataricus DnaG and Rrp4 but not Csl4 show preference for poly(rA). Archaeal DnaG contains N- and C-terminal domains (NTD and CTD) of...

متن کامل

Attack from both ends: mRNA degradation in the crenarchaeon Sulfolobus solfataricus.

RNA stability control and degradation are employed by cells to control gene expression and to adjust the level of protein synthesis in response to physiological needs. In all domains of life, mRNA decay can commence in the 5'-3' as well as in the 3'-5'-direction. Consequently, mechanisms are in place conferring protection on mRNAs at both ends. Upon deprotection, dedicated enzymes/enzyme comple...

متن کامل

Alterations of the Transcriptome of Sulfolobus acidocaldarius by Exoribonuclease aCPSF2

Recent studies identified a 5´ to 3´ exoribonuclease termed Sso-RNase J in the crenarchaeon Sulfolobus solfataricus (Sso), which has been reclassified to the aCPSF2 (archaeal cleavage and polyadenylation specificity factor 2) group of β-CASP proteins. In this study, the Sso-aCPSF2 orthologue of Sulfolobus acidocaldarius (Saci-aCPSF2) was functionally characterized. Like Sso-aCPSF2, Saci-aCPSF2 ...

متن کامل

The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs

The archaeal RNA-degrading exosome contains a catalytically active hexameric core, an RNA-binding cap formed by Rrp4 and Csl4 and the protein annotated as DnaG (bacterial type primase) with so-far-unknown functions in RNA metabolism. We found that the archaeal DnaG binds to the Csl4-exosome but not to the Rrp4-exosome of Sulfolobus solfataricus. In vitro assays revealed that DnaG is a poly(A)-b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017